General analysis

Overview

Details

C-PAC: The Configurable Pipeline for the Analysis of Connectomes

Authors : Steven Giavasis, Cameron Craddock, Michael Milham
Description : The Configurable Pipeline for the Analysis of Connectomes (C-PAC) is a configurable, open-source, Nipype-based, automated processing pipeline for resting state functional MRI (R-fMRI) data, for use by both novice and expert users. It is designed and tested for use with human data (all ages), as well as with non-human primate and rodent data.
Documentation : http://fcp-indi.github.io/
Link : Quick-Start
Language : Python
Publication : Craddock et al. (2013)
Communication : C-PAC Forum
Restrictions : None

MacqD

Authors : Genevieve Jiawei Moat, Maxime Gaudet-Trafit, Julian Paul, Jaume Bacardit, Suliann Ben Hamed & Colline Poirier
Description : Deep-learning-based model for automatic detection of socially housed laboratory macaques.
Documentation : https://github.com/C-Poirier-Lab/MacqD.git
Link : https://github.com/C-Poirier-Lab/MacqD.git
Language : Python: 3.7.13
Publication : Moat GJ et al. (2025)
Communication : E-mail Colline
Restrictions : citation required

NeuroElf

Authors : Jochen Weber
Description : NeuroElf is a powerful Matlab-based toolbox for working with neuroimaging data.
Documentation : NeuroElf website
Link : http://neuroelf.net/
Language : Matlab
Publication : http://neuroelf.net/
Communication : GitHub
Restrictions : See license